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We investigate modulation instability �MI� in negative-index material �NIM� with a Kerr nonlinear polar-
ization based on a derived �3+1�-dimensional nonlinear Schrödinger equation for ultrashort pulse propagation.
By a standard linear stability analysis, we obtain the expression for instability gain, which unifies the temporal,
spatial, and spatiotemporal MI. It is shown that negative refraction not only brings some new features to MI,
but also makes MI possible in ordinary material in which it is otherwise impossible. For example, spatial MI
can occur in the defocusing regime, while it only occurs in the focusing regime in ordinary material. Spa-
tiotemporal MI can appear in NIM in the case of anomalous dispersion and defocusing nonlinearity, while it
cannot appear in ordinary material in the same case. We believe that the difference between the MI in NIM and
in ordinary material is due to the fact that negative refraction reverses the sign of the diffraction term, with the
signs of dispersion and nonlinearity unchanged. The most notable property of MI in NIM is that it can be
manipulated by engineering the self-steepening effect by choosing the size of split-ring resonator circuit
elements. To sum up the MI in ordinary material and in NIM, MI may occur for all the combinations of
dispersion and nonlinearity.
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I. INTRODUCTION

Over three decades ago, Veselago �1� demonstrated theo-
retically that a material in which both the dielectric permit-
tivity � and magnetic permeability � are negative would also
allow the propagation of electromagnetic waves. The refrac-
tive index of such a material is negative, and thus it is called
negative index material �NIM�. Although there are no known
naturally occurring NIMs, artificially designed materials
�metamaterials� can act as NIMs. Since the experimental
confirmation of negative refraction in the metal-dielectric
metamaterials at microwave wavelengths �2,3�, there has
been intense interest in NIMs. In the meanwhile, negative
refraction in the near-IR range have been experimentally
demonstrated in GaAs-based photonic crystals �4� and in a
Si-polyimide photonic crystals �5�, respectively. NIMs at op-
tical wavelengths will also be obtainable before long �6�.
Additionally, nonlinear NIMs can also be created �7–9�. For
example, Zharov et al. �7� demonstrated that a two-
dimensional periodic structure created by arrays of wires and
split-ring resonators embedded into a nonlinear dielectric
takes on a Kerr-type dielectric permittivity.

Recently, there has been a great deal of research on the
propagation of electromagnetic radiation in NIMs �10–16�.
Most research, however, is on the propagation of plane
waves in the linear regime. Some authors have demonstrated
the basic dynamics of short pulses undergoing negative re-
fraction in the linear propagation regime �13–16�. A natural
extension is the nonlinear propagation of ultrashort pulse in
NIM �11,17–19�. The study of the nonlinear propagation of
ultrashort pulses in NIMs could lead to completely new elec-
tronic and optical devices. Very recently, several papers have
been published on the nonlinear propagation of ultrashort

pulses in NIMs. In Ref. �17�, Lazarides and Tsironis derived
a system of coupled nonlinear Schrödinger equations for the
envelopes of the propagating electric and magnetic fields in
an isotropic, homogeneous, quasi-one-dimensional NIM.
Based on the coupled nonlinear Schrödinger equations,
Kourakis and Shukla have investigated the nonlinear stability
of electromagnetic waves in NIM, and obtained the modula-
tional stability profile of the coupled plane-wave solutions
�18�. Scalora et al. �19� investigated the propagation of
pulses at least a few tens of optical cycles in duration in NIM
with a nonlinear polarization, and obtained a new general-
ized nonlinear Schrödinger equation for the envelope of the
propagating electric field in which the linear and nonlinear
coefficients can be tailored through the linear properties of
the medium to attain any combination of signs unachievable
in ordinary matter, showing a significant potential to realize a
wide class of solitary waves.

In this paper, we investigate modulation instability �MI�
in NIM with a Kerr nonlinearity. MI of continuous wave
�cw� or quasi-cw is an issue closely related to the existence
of both bright and dark solitons. It is probably the most re-
markable nonlinear phenomena that may occur in nature. In
nonlinear optics, MI can be classified as temporal �20,21�,
spatial �or transverse� �22,23�, and spatiotemporal �24,25�.
The temporal MI occurs due to the interplay between non-
linearity and group velocity dispersion �GVD� and manifests
itself as the breakup of cw or quasi-cw into a train of ul-
trashort pulses. The spatial MI occurs as a result of the in-
teraction between nonlinearity and diffraction and manifests
itself as the breakup of an otherwise homogeneous beam into
numerous small filaments. It is also known as small-scale
self-focusing in which diffraction plays the same role as
anomalous GVD in the case of temporal MI. Unlike indepen-
dently occurring temporal MI and spatial MI, the spatiotem-
poral MI occurs due to the simultaneous presence of tempo-
ral and spatial MI in a nonlinear medium. MI in NIMs
remains essentially unexplored. To disclose the properties of*Electronic address: scwen@hnu.cn
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MI in NIMs, we first derive a propagation model for
�3+1�-dimensional ultrashort pulses in NIM characterized
by a Drude model of both � and �. Then we present a linear
stability analysis to obtain the expression for instability gain.
Based on the obtained expression, we further clarify three
kinds of MI, i.e., temporal, spatial, and spatiotemporal MI in
NIM, and compare them to those in ordinary dispersive me-
dia and explain the differences. We find some new features
of MI in NIMs, demonstrating that NIMs provide a new
choice for soliton generation.

II. „3+1…-DIMENSIONAL MODEL FOR PULSE
PROPAGATION IN NIMs

We first present a derivation of a �3+1�-dimensional evo-
lution equation for an envelope description of pulse propa-
gation in the NIM with a nonlinear polarization. Our ap-
proach differs from that of Ref. �19� in that we eliminate the
magnetic field at the very start. This makes it possible for us
to derive the propagation equation by following the same
procedure as in ordinary materials. It is easy to show that,
from Maxwell equations, we can obtain the following three-
dimensional wave equation:

� �2

�z2 + ��
2 �E�r�,t� = ��

�2E�r�,t�
�t2 + �

�2Pnl�r�,t�
�t2 , �1�

where ��
2 is the transverse Laplace operator. The electric

field E propagates along the z direction. Both E and the
nonlinear polarization Pnl are assumed to be polarized paral-
lel to the x axis.

It is known that � and � in a NIM have to be dispersive,
otherwise the energy density could be negative �1�. Their
frequency dispersion can be described by a lossy Drude
model �26�,

���� = �0�1 −
�pe

2

��� + i�e�
�, ���� = �0�1 −

�pm
2

��� + i�m�� ,

�2�

where � is frequency, �pe and �pm are the respective electric
and magnetic plasma frequencies, �e and �m are the respec-
tive electric and magnetic loss terms, which are very small
and are neglected in the following analysis for simplicity,
and �0 and �0 are the respective vacuum permittivity and
magnetic permeability. The negative refraction behavior is
restricted within a certain range of frequency values. We can
transform Eq. �1� into frequency space in order to expand
���� and ���� in powers of �, thus enabling us to treat the
material parameters as a power series which we can truncate
to an appropriate order. However, for simplicity it is better to
expand ����� and ����� about a suitable �0 instead,

����� = 	
n=0

� 
� �n�������
��n �

�=�0

�� − �0�n

n! � , �3�

����� = 	
n=0

� 
� �n�������
��n �

�=�0

�� − �0�n

n! � . �4�

We can now write the frequency space version of Eq. �1� as

� �2

�z2 + ��
2 �Ẽ�r�,��

= − 	
m=0

� 
� �m����
��m �

�=�0

�� − �0�m

m! �
�	
n=0

� 
� �n����
��n �

�=�0

�� − �0�n

n! �Ẽ�r�,�� − �

�	
n=0

� 
� �n����
��n �

�=�0

�� − �0�n

n! �P̃nl�r�,�� , �5�

where Ẽ and P̃nl are the Fourier transforms of E and
Pnl, respectively. We introduce an envelope and carrier
form for the field in the usual way, using r�= �r�� ,z�,
r��= �x ,y�, so that, E�r�� ,z , t�=A�r�� ,z , t�exp�ik0z− i�0t�+c.c,
where k0=n��0��0 /c, and n��0� is the refractive index
of the material at �0. In addition, we assume that Pnl�r� , t�
=�0��3�E�r�� ,z , t�2E�r�� ,z , t�, where ��3� is the third-order
susceptibility, which characterizes a Kerr nonlinearity. With
these envelope-carrier substitutions, and taking the inverse
Fourier transform of the obtained equation, we have

� �2

�z2 + 2ik0
�

�z
− k0

2 + ��
2 �A

= − 	
m=0

� 
Dm
�mA

�tm � − �0��3��0F0A2A − �0��3�

�	
m=1

� ��iFm−1 + �0Fm�
�m

�tm �A2A�� , �6�

where

Dm = 	
l=0

m � im

l!�m − l�!
�l����

��l �
�=�0

� �m−l����
��m−l �

�=�0

�7�

and

Fm =
im

m!
� �m�������

��m �
�=�0

. �8�

Introducing comoving variables, 	= t−z /V, 
=z,
where V=2k0 / ��0��+�0���, �=�������� /���=�0

,
�=�������� /���=�0

, Eq. �6� is transformed to

2ik0
�A

�

= − ��

2 A −
1

V2

�2A

�	2 − 	
m=2

� 
Dm
�mA

�	m � −
�2A

�
2 +
2

V

�2A

�	�


− �0�0��3�F0A2A − �0��3�	
m=1

� ��iFm−1 + �0Fm�

�
�m

�	m �A2A�� . �9�

In deriving Eq. �9�, we have not made further approxima-
tions. It is suitable for few-cycle pulse propagation in NIM,
and is thus more general than Eq. �12� in Ref. �19�. In fact,
by using the same approximations as Ref. �19�, one can eas-
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ily show that Eq. �12� in Ref. �19� is recovered by our Eq.
�9�.

To explicitly demonstrate the fundamental aspect of MI in
NIM, we keep the dispersion coefficients to second order and
neglect all higher-order derivatives �m�2� with respect to
the nonlinearity. Equation �9� is thus reduced to

�A

�

=

i

2k0
��

2 A −
i2

2

�2A

�	2 + iCnl�1 + iCs
�

�	
��A2A� ,

�10�

where 2, Cnl, and Cs are the GVD, nonlinear, and self-
steepening coefficients, respectively. They are defined as

2 = ��� + �0���/2 + �0���/2 − 1/V2�/k0, �11�

Cnl = �0�r�
�3�/�2cn� , �12�

Cs = �1 + �/� − �0/�k0V��/�0, �13�

where ��=�2������� /��2�=�0
, ��=�2������� /��2�=�0

,
and c is light velocity in vacuum.

Figure 1 shows the variation of n, 2, Cnl, and Cs with
� /�pe for �pm /�pe=0.8 and �e=�m=0. It shows that the
zero GVD point is located at � /�pe�0.7 in the negative
refraction region. By choosing the size of split-ring resonator
circuit elements, the zero GVD point can be shifted back and
forth �3,16�. Compared to ordinary material, the most notice-
able characteristics of the parameters of the nonlinear
Schrödinger equation �10� is the anomaly of self-steepening
parameter: First, the self-steepening parameter can be nega-
tive and zero, with the zero point located at � /�pe�0.634
for the present case. Second, in the positive self-steepening
region �� /�pe�0.634�, the value of the normalized self-
steepening parameter is about 1, approximating the value in
ordinary material, while in the negative self-steepening re-
gion �� /�pe�0.634�, it can be far larger than 1. Like the
GVD parameter, the self-steepening parameter can also be
engineered by choosing the size of split-ring resonator circuit

elements. The anomalous characteristics of the linear and
nonlinear parameters mean that there should be anomalous
phenomena of MI and soliton in NIM. Apparently, a reex-
amination of the two phenomena is necessary.

III. ANALYSIS OF MODULATION INSTABILITY IN NIM

Although Kourakis and Shukla �18� have investigated the
nonlinear stability of electromagnetic waves in NIM, they
only considered the case of temporal MI in NIM based on a
system of coupled nonlinear Schrödinger equations for both
electric and magnetic pulses propagation. The system of
coupled nonlinear Schrödinger equations does not include
the diffraction and the anomalous self-steepening effects, and
thus the characteristics of two other two kinds of MI, namely
spatial and spatiotemporal MI, and the influence of the
anomalous self-steepening effect on MI, are not disclosed.
Here, we first derive a general expression for MI gain in
NIM by a standard linear stability analysis based on Eq. �10�,
and then clarify three kinds of MI.

A. Derivation of the expression for MI gain in NIM

Apparently, Eq. �10� has the continuous wave �cw� solu-
tion, A�x ,y ,
 ,	�=A0 exp�ib
�, where A0 is the amplitude of
the cw solution, b=CnlA0

2. We assume that the cw solution is
slightly perturbed such that

A�x,y,
,	� = A0�1 + a�x,y,
,	��exp�ib
� , �14�

where the perturbation a�1. Substituting Eq. �14� into Eq.
�10� and linearizing in a, we obtain the evolution equation
for a,

�a

�

=

i

2k0
��

2 a −
i2

2

�2a

�	2 + ib�a + a*� − 2Csb
�a

�	
− Csb

�a*

�	
.

�15�

Decomposing the perturbation into real and imaginary parts,
a=u+ iv, we obtain two coupled equations,

�u

�

= −

1

2k0
��

2 v +
2

2

�2v
�	2 − 3Csb

�u

�	
,

�v
�


=
1

2k0
��

2 u −
2

2

�2u

�	2 + 2bu − Csb
�v
�	

. �16�

By introducing the Fourier transforms

ũ�qx,qy,�,
� =� � �
�

u�x,y,	,
�

�exp�i�qxx + qyy + �	��dxdyd	 ,

ṽ�qx,qy,�,
� =� � �
�

v�x,y,	,
�

�exp�i�qxx + qyy + �	��dxdyd	 , �17�

where q�=�qx
2+qy

2� and � are the transverse wave number
and frequency for the perturbation, respectively, the linear-

FIG. 1. Refractive index n, GVD 2, nonlinearity parameter Cnl

�here we assume ��3��0�, and self-steepening parameter Cs vs
� /�pe for �pm /�pe=0.8. Cnl is calculated in units of ��3� / �2c�, 2

in units of 1 / �2�c�pe�, and Cs in units of 1 /�0.
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ized system �16� is converted to a set of ordinary differential
equations in frequency space,

�

�

�ũ

ṽ
� = �m11 m12

m21 m22
��ũ

ṽ
� , �18�

where m11=−i3Csb�, m12=q2 / �2k0�−2�2 /2, m21=
−q2 / �2k0�+2�2 /2, and m22=−iCsb�. The positive real
part of the eigenvalue of the coefficient matrix corresponds
to the instability gain G,

G =�� q2

2k0
−

2�2

2
��2b −

q2

2k0
+

2�2

2
� − Cs

2b2�2.

�19�

For convenience, we introduce a characteristic frequency,
�c=2�b /2, and make the substitutions, �=q / �2�k0b�,
�=� /�c, g=G / b, s=Cs�c, to transform Eq. �19� into the
following normalized form:

g = �4�sgn�n��2 − sgn�2��2��sgn���3�� − sgn�n��2 + sgn�2��2� − s2�2. �20�

In the case when instability occurs, it is interesting to find a
particular perturbation mode that provides for a maximum
instability gain. Such a mode, which is usually called the
fastest growing mode, can be found from Eq. �20� by setting
�g /��=0, �g /��=0, and its spatial and temporal frequencies
are such that

sgn�n��max
2 − sgn�2��max

2 = sgn���3��/2, �21�

and the corresponding maximum gain is

gmax = �1 − s2�2. �22�

The general expressions �20�–�22� form the basis of our
further analysis. As is well known and demonstrated in Fig.
1, negative refraction behavior is restricted within a certain
range of frequency values. Thus, Eqs. �20�–�22� formally
apply to both ordinary materials and NIMs. In addition,
Eq. �20� unifies all three kinds of MI in NIM: �i� by setting
�=0, we obtain the gain expression for temporal MI; �ii� by
setting �=0, we obtain the gain expression for spatial MI,
also called small-scale self-focusing. Further, it is obvious
that whether MI occurs depends on not only the combination
of the signs of n, 2, and ��3�, as in ordinary material, but
also on the value of self-steepening parameter s. As Fig. 1
shows, the self-steepening parameter can be large enough to
make the modulation gain be imaginary, meaning MI cannot
occur. Equations �21� and �22� show that for occurring MI,
the self-steepening effect reduces the maximum gain, yet
does not influence the fastest growing frequencies.

B. Features of the three kinds of MI in NIM

Modulation instability in ordinary materials with
sgn�n�=1 has been well understood. We thus focus our at-
tention on the case of sgn�n�=−1 for different combinations
of the signs of 2 and ��3� to disclose the properties of tem-
poral, spatial, and spatiotemporal MIs in NIMs, respectively.

1. Temporal MI in NIM

The expression for temporal MI gain is obtained from Eq.
�20� by setting �=0,

g = �− 4 sgn�2��2�sgn���3�� + sgn�2��2� − s2�2,

�23�

which is the same as that for MI in ordinary material �20,21�.
For focusing nonlinearity, MI occurs in the anomalous dis-
persion regime, while for defocusing nonlinearity, MI occurs
in the normal dispersion regime. This similarity can be ex-
plained as follows. For one thing, temporal MI occurs only
when nonlinearity and dispersion act in opposition: when
nonlinearity is positive �focusing�, GVD must be anomalous;
if nonlinearity is negative �defocusing�, GVD must be nor-
mal. For another thing, although negative refraction alters
the sign of wave number k0, it does not alter the sign of the
nonlinearity coefficient determined by the combination of
signs of �, n, and ��3�, as Eq. �12� shows. For NIM, � and n
are simultaneously negative, and thus the sign of the nonlin-
earity coefficient is only determined by ��3�, as in ordinary
materials. The similarity means that negative refraction of
material does not influence the temporal property of the fun-
damental soliton propagation.

The self-steepening effects in NIM and in ordinary mate-
rial are quite different. First, the self-steepening effect in
NIM can be positive and negative, as is shown in Ref. �19�
and in Fig. 1. Secondly, the self-steepening coefficient Cs
may be very large in NIM, and even far larger than in ordi-
nary material. The first difference does not alter the role of
the self-steepening effect in MI in NIM, as is shown in Eq.
�23�, which shows that MI in NIM is independent of the sign
of the self-steepening coefficient. The second difference,
however, is most notable, which may lead to quite different
results. In NIM, the self-steepening effect suppresses MI by
reducing the maximum MI gain and shrinking the gain band
when

s2 � − 4�sgn���3��sgn�2� + �2� , �24�

as it does in ordinary material, and eliminates MI when

s2 � − 4�sgn���3��sgn�2� + �2� . �25�

Figure 2 is the plot of MI gain g versus � for different values
of self-steepening coefficient s. We see that the MI gain band
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shrinks as the self-steepening coefficient increasesœ and dis-
appears after the self-steepening coefficient arrives at a criti-
cal value. As stated before, the self-steepening effect can be
engineered, thus the MI can be manipulated. These results
illustrate not only the unusual nonlinear effects that can be
seen in NIMs, but also the new ways of manipulating soli-
tons.

2. Spatial MI in NIM

The features of spatial MI in NIM can be obtained from
the following expression for MI gain:

g = �− 4�2�sgn���3�� + �2� . �26�

Apparently, spatial MI only occurs in defocusing NIM
���3��0�, contrary to that in ordinary material, in which spa-
tial MI only occurs in the focusing regime ���3��0�. This
opposition is due to the fact that negative refraction reverses
the sign of the diffraction term, with the nonlinearity coeffi-
cient unchanged, as Eqs. �10� and �12� show. This result
suggests that negative refraction not only reverses the condi-
tions for the formation of spatial bright and dark solitons,
and the appearance of self-focusing and self-defocusing of
optical beam in nonlinear materials, but also supplies a new
way of stimulating spatial MI, making MI possible in ordi-
nary materials in which it is otherwise impossible.

3. Spatiatemporal MI in NIM

The results for spatiotemporal MI in NIM are summarized
in density plots of gain versus temporal frequency � and
spatial frequency � for s=0 �Fig. 3�. It shows that spatiotem-
poral MI occurs in three cases: �i� in focusing material with
anomalous dispersion �Fig. 3�a�� under the condition of

0 � �2 − �2 � 1, �27�

�ii� in defocusing material with normal dispersion �Fig. 3�b��
under the condition of

�2 + �2 � 1, �28�

and �iii� in defocusing material with anomalous dispersion
�Fig. 3�c�� under the condition of

0 � �2 − �2 � 1. �29�

Comparing the results with those in ordinary nonlinear dis-
persive material �24,25�, we find an interesting fact that the
spatiotemporal MI in NIM for a definite combination of dis-
persion and nonlinearity is just that in ordinary material for a
combination of opposite dispersion and opposite nonlinear-
ity. For example, the gain spectra in the three cases, corre-
sponding to Figs. 3�a�–3�c�, are, respectively, the same as
those in ordinary material for the cases of �i� defocusing

FIG. 2. Temporal MI gain spectrum in NIM with different self-
steepening parameter s.

FIG. 3. Spatiotemporal MI gain in the �� ,�� plane for the cases
of �a� focusing material with anomalous dispersion, �b� defocusing
material with normal dispersion, and �c� defocusing material with
anomalous dispersion. The gray to white regions represent temporal
and spatial frequencies to high gain on a linear scale; gain is zero in
the black regions.
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nonlinearity and normal dispersion, �ii� focusing nonlinearity
and anomalous dispersion, and �iii� focusing nonlinearity and
normal dispersion. The physical origin of the fact is that the
negative refraction reverses the phase velocity, and thus re-
verses the diffraction term. This leads to the diffraction and
normal dispersion being equivalent when acting with nonlin-
earity in NIM, while in ordinary material, diffraction is
equivalent with anomalous dispersion. In addition, spa-
tiotemporal MI shows how diffraction and dispersion act to-
gether to couple space and time. It occurs due to the simul-
taneous presence of temporal MI and spatial MI in a
nonlinear medium, unlike independently occurring temporal
MI and spatial MI. Thus the three cases in which spatiotem-
poral MI can occur can also be obtained by combining the
former two kinds of MI.

Just like temporal MI, if the role of the self-steepening
effect is taken into account, the spatiotemporal MI may be
suppressed and even eliminated, depending on the value of
self-steepening parameter.

To sum up, supplemented by NIM, MI can occur in non-
linear optics for any combination of the signs of dispersion
and nonlinearity. Spatiotemporal MI can be used to convert a
cw into a train of ultrashort pulses. The anomalous MI re-
gions in NIMs thus provide an alternative way of generating
ultrashort pulses.

IV. CONCLUSION

We have derived a �3+1�-dimensional nonlinear
Schrödinger equation for ultrashort pulse propagation in

negative-index material with Kerr nonlinearity. Based on the
nonlinear Schrödinger equation, we obtain the expression for
MI gain, which unifies the temporal, spatial, and spatiotem-
poral MI. We demonstrate that temporal MI may occur in
both focusing and defocusing regimes, as in ordinary mate-
rials. Spatial MI, however, only occurs in the defocusing
regime, contrary to ordinary material. Spatiotemporal MI in
NIM for a definite combination of dispersion and nonlinear-
ity is just that in ordinary material for a combination of op-
posite dispersion and opposite nonlinearity. We believe that
the difference between the MI in NIM and in ordinary ma-
terial is due to the fact that negative refraction reverses the
sign of the diffraction term, with the signs of dispersion and
nonlinearity unchanged. The most notable property of MI in
NIM is that it can be manipulated by engineering the self-
steepening effect by choosing the size of split-ring resonator
circuit elements. To sum up the MI in ordinary material and
in NIM, MI may occur for all the combinations of dispersion
and nonlinearity. The results suggest new ways of generating
solitons and ultrashort pulses, and illustrate the unusual non-
linear effects that can be seen in NIMs.
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